Flatworms are unsegmented, bilaterally symmetrical worms that lack a coelom (acoelomate) but that do have three germ layers. Some forms are free living but many are parasitic. Flatworms have a cephalized nervous system that consists of head ganglion, usually attached to longitudinal nerve cords that are interconnected across the body by transverse branches. Excretion and osmoregulation by flatworms is controlled by "flame cells" located in protonephridia (these are absent in some forms). Flatworms lack a respiratory or circulatory system; these functions take place by absorption through the body wall. Nonparasitic forms have a simple, incomplete gut; even this is lacking in many parasitic species.

Movement in some flatworms is controlled by longitudinal, circular, and oblique layers of muscle. Others move along slime trails by the beating of epidermal cilia. The development of directional movement is correlated with cephalization. In some flatworms, the process of cephalization has included the development in the head region of light-sensitive organs called ocelli. Other sense organs found in at least some members of this group (not necessarily on the head) include chemoreceptors, balance receptors (statocysts), and receptors that sense water movement (rheoreceptors).

Most flatworms can reproduce sexually or asexually. Most are monoecious. Most of these have developed ways of avoiding self-fertilization. Development may be direct (eggs hatch into tiny worms that resemble the adults) or indirect (with a ciliated larval form).

Flatworms include a large number of parasitic forms, some of which are extremely damaging to human populations.

Click on the name of a Class below to learn more:

  • Class Turbellaria (turbellarians, flatworms)
  • Class Monogenea (parasitic flukes)
  • Class Trematoda (parasitic flukes)
  • Class Cestoda (tapeworms)


Hickman, C.P. and L. S. Roberts. 1994. Animal Diversity. Wm. C. Brown, Dubuque, IA.

Brusca, R. C., and G. J. Brusca. Invertebrates. 1990. Sinauer Associates, Sunderland, MA.


Phil Myers (author), Museum of Zoology, University of Michigan-Ann Arbor.